Resource efficient plasmon-based 2D-photovoltaics with reflective support.

نویسندگان

  • Carl Hägglund
  • S Peter Apell
چکیده

For ultrathin (~10 nm) nanocomposite films of plasmonic materials and semiconductors, the absorptance of normal incident light is typically limited to about 50%. However, through addition of a non-absorbing spacer with a highly reflective backside to such films, close to 100% absorptance can be achieved at a targeted wavelength. Here, a simple analytic model useful in the long wavelength limit is presented. It shows that the spectral response can largely be characterized in terms of two wavelengths, associated with the absorber layer itself and the reflective support, respectively. These parameters influence both absorptance peak position and shape. The model is employed to optimize the system towards broadband solar energy conversion, with the spectrally integrated plasmon induced semiconductor absorptance as a figure of merit. Geometries optimized in this regard are then evaluated in full finite element calculations which demonstrate conversion efficiencies of up to 64% of the Shockley-Queisser limit. This is achieved using only the equivalence of about 10 nanometer composite material, comprising Ag and a thin film solar cell layer of a-Si, CuInSe₂ or the organic semiconductor MDMO-PPV. A potential for very resource efficient solar energy conversion based on plasmonics is thus demonstrated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Van der Waals Materials for Atomically-Thin Photovoltaics: Promise and Outlook

Two-dimensional (2D) semiconductors provide a unique opportunity for optoelectronics due to their layered atomic structure, electronic and optical properties. To date, a majority of the application-oriented research in this field has been focused on fieldeffect electronics as well as photodetectors and light emitting diodes. Here we present a perspective on the use of 2D semiconductors for phot...

متن کامل

Metallic Nanoparticles Coupled with Photosynthetic Complexes

Plasmon excitations in metallic nanoparticles provide an efficient way to manipulate electromagnetic fields at the nanoscale (Maier, 2004). While the interactions between plasmons and simple nanostructures such as organic dyes or semiconductor nanocrystals is relatively well described and understood, application of metallic nanoparticles to multipigment structures has started just recently (Car...

متن کامل

Surface plasmon-enhanced nanopillar photodetectors.

We demonstrate nanopillar-(NP) based plasmon-enhanced photodetectors (NP-PEPDs) operating in the near-infrared spectral regime. A novel fabrication technique produces subwavelength elongated nanoholes in a metal surface self-aligned to patterned NP arrays that acts as a 2D plasmonic crystal. Surface plasmon Polariton Bloch waves (SPP-BWs) are excited by the metal nanohole array resulting in ele...

متن کامل

Optical and electrical study of organic solar cells with a 2D grating anode.

We investigate both optical and electrical properties of organic solar cells (OSCs) incorporating 2D periodic metallic back grating as an anode. Using a unified finite-difference approach, the multiphysics modeling framework for plasmonic OSCs is established to seamlessly connect the photon absorption with carrier transport and collection by solving the Maxwell's equations and semiconductor equ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 18 Suppl 3  شماره 

صفحات  -

تاریخ انتشار 2010